
MedeA MLP
Efficient and Flexible Machine Learning Potential Support

At-a-Glance

MedeA®1 MLP (Machine Learning Potential)
provides full MedeA support for LAMMPS
based machine learning potential simulations,
including the simulation of mechanical, vibra-
tional, and transport properties combined with
comprehensive MedeA based analysis of sim-
ulation results.

MedeA MLP includes a library of published
machine learning potentials derived from the
Spectral Neighbor Analysis Potential (SNAP)2

formalism supported by LAMMPS.

MedeA LAMMPS based simulations using
MedeA MLP typically show excellent agree-
ment with first-principles methods for systems
that are well represented by the training set
employed in creating the machine learning po-
tential.

Key Benefits

Productivity

• Extends ab initio simulation results to larger
length and time scales through substantially
reduced energy and force calculation times

• Efficient use of published machine learning
potentials

• Automates the handling of files and data for
efficient simulation

Access

• Supports the SNAP machine learning
potential form

• Allows access to all MedeA LAMMPS
simulation properties with machine learning
potential accuracy

• Can be employed with the Machine Learning
Potential Generator (MedeA MLPG) to
access newly derived machine learning
potentials

• Handles diverse atomic geometries including
making and breaking of bonds

Machine learning methods allow rich first-
principles datasets to be mined and employed in
interpolation and inference. Such techniques are
having a dramatic effect in many areas of science.
In materials science, they allow researchers to
obtain the accuracy and freedom from bias of ab
initio methods at reasonable computational cost
for substantial simulation times and system sizes.

‘All science depends on past work. Ma-
chine Learning depends more than other
science on previous work: it needs exam-
ples.’

Michael Levitt, Nobel Laureate.

Machine learning based methods for energy and
force calculation have been used for a number of
years. For example, Blank et al. in 1995 employed
a neural net based methodology to probe the en-
ergetics of CO on the Ni(111) surface3. In recent
years it has become increasingly clear that such
approaches, employing novel descriptors and ad-
vanced machine learning techniques, can yield
exceptionally accurate reproduction of quantum
mechanical training data at substantially reduced
computational cost4.

MedeA MLP provides easy to use and efficient
access to such methods. By making such ma-
chine learning potentials accessible for use with
MedeA LAMMPS, MedeA MLP extends the range
of ab initio methods to much larger length and time
scales, while relying on first-principles results for
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accuracy and validation. All input data and neces-
sary files are readily accessible using the MedeA
JobServer infrastructure.

Figure 1: The foundations of machine learning potential
simulations are descriptors which capture the details of an
atom’s chemical environment within a defined cutoff ra-
dius. These descriptors are employed, via machine learning
based training, to compute the energy of the complete sys-
tem as a sum of atomic contributions. This image represents
a set of atom based environment descriptors.

Technical Features

User Interface

• Import MLPs .frc files
• Automatic atom type assignment
• Automated creation of LAMMPS input datasets

Example Systems

• Cu, Ge, Li, Mo, Ni, Si, Ta, W
• InP, Li3N, NbMoTaW, NiMo, WBe

Illustrative publications5,6,7,8,9,10

Key Features

• Library of published machine learning
potentials

• Full support for the SNAP description
• Enables LAMMPS MLP simulations in the

MedeA Environment

Required Modules

• MedeA Environment
• MedeA LAMMPS

Related Modules

• MedeA MT
• MedeA Phonon
• MedeA Diffusion
• MedeA Surface Tension
• MedeA Thermal Conductivity

Find Out More

Learn more about Machine Learning by watching
the webinar: https://www.materialsdesign.com/
webinars/recorded/Machine-Learning-Quantum%
C2%A0Chemistry-Catalysts
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